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SparRec: An effective matrix 
completion framework of missing 
data imputation for GWAS
Bo Jiang1,*, Shiqian Ma2,*, Jason Causey3,4,*, Linbo Qiao5, Matthew Price Hardin6, Ian Bitts3, 

Daniel Johnson7, Shuzhong Zhang8 & Xiuzhen Huang3,4,6

Genome-wide association studies present computational challenges for missing data imputation, while 
the advances of genotype technologies are generating datasets of large sample sizes with sample 
sets genotyped on multiple SNP chips. We present a new framework SparRec (Sparse Recovery) for 
imputation, with the following properties: (1) The optimization models of SparRec, based on low-
rank and low number of co-clusters of matrices, are different from current statistics methods. While 
our low-rank matrix completion (LRMC) model is similar to Mendel-Impute, our matrix co-clustering 
factorization (MCCF) model is completely new. (2) SparRec, as other matrix completion methods, 
is flexible to be applied to missing data imputation for large meta-analysis with different cohorts 
genotyped on different sets of SNPs, even when there is no reference panel. This kind of meta-analysis 
is very challenging for current statistics based methods. (3) SparRec has consistent performance and 
achieves high recovery accuracy even when the missing data rate is as high as 90%. Compared with 
Mendel-Impute, our low-rank based method achieves similar accuracy and efficiency, while the co-
clustering based method has advantages in running time. The testing results show that SparRec has 
significant advantages and competitive performance over other state-of-the-art existing statistics 
methods including Beagle and fastPhase.

Genome-wide association studies (GWAS) are promising to contribute to uncovering the genetic variations for 
many complex human diseases, with the many initiatives including the International HapMap Project and the 
1000 Genomes Project. Genotype imputation represents the computational challenge of predicting the genotypes 
at the SNPs that are not directly genotyped in the study sample. Genotype imputation could increase the power 
of the GWAS study through fine-mapping to increase the chance of a causal SNP being identified, meta-analysis 
when combining different cohorts using different genotyping chips, and imputation of untyped variations which 
are not typed in the reference panel or the study sample1. Genotype imputation methods have been widely used 
to boost genome-wide association studies across the genome or at a focused region.

With the advances of genotyping technologies, large amounts of genetic datasets are being continuously and 
rapidly generated around the world. As is pointed in ref. 2, for “next-generation” association data studies in the 
near future, we will be handling datasets with (1) larger sample sizes, (2) unphased and incomplete genotypes, 
and (3) multiple reference panels and more diverse study datasets from different platforms with different sets of 
SNPs. This brings great computational challenges to the genotype imputation problem, which calls for not only 
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the improvement of the current approaches, but also new mathematical models, which are supposed to exploit the 
structure of the large datasets and model the imputation problem in ways different from traditional approaches.

Many current imputation methods are based on statistics models, such as the Hidden Markov Model (HMM) 
and the Expectation-Maximization (EM) algorithm1,3. The way they work is to use haplotype patterns in refer-
ence panels to predict untyped genotypes in study panels. They depend on the availability of the reference panels, 
thus their performances are in a way limited by the quality of the chosen reference panels. Due to the nature of 
the models, current statistics methods are not flexible in handling datasets with multiple reference panels and 
diverse study panels for imputation tasks with various studies. Current statistics methods often require a cum-
bersome process to prepare the formatted input files, as well as a process for interpreting the output results from 
the computational methods, which makes the approaches less amenable to biological and biomedical researchers 
imputing their study samples.

Chi et al.4 developed a low-rank matrix completion based method Mendel-Impute for GWAS imputation. The 
HMM or EM based statistics methods and the low-rank matrix completion based method Mendel-Impute all rely 
on the identification of shared haplotypes (or the low-rank structure) in local blocks arising from linkage dise-
quilibrium (LD). For the computational models proposed in this paper, our idea originated from the observation 
that there are often some sort of sparsity structures, such as low-rank and/or low numbers of co-clusters, in large 
genomic data matrices. Though similar sparsity structure has been used in imaging processing in the context of 
compressive sensing, only until recently we applied it in analyzing cancer patient gene expression profiling data 
matrices5. In this paper we propose to use the sparsity structure to meet the challenge of missing data imputation 
for GWAS.

In this paper we present a new framework, SparRec (Sparse Recovery), for imputing missing genetic data in 
genome-wide association studies. The models of SparRec are designed based on the sparse properties of low-rank 
and low numbers of co-clusters of the large, noisy, genetic datasets of matrices with missing data. We would like 
to point out that the low-rank matrix completion (LRMC) model is similar to Mendel-Impute, but the matrix 
co-clustering factorization (MCCF) model is completely new. We will illustrate how our approach is able to effec-
tively find patterns for imputation within study data, both with and without reference panels, and even with data 
missing rate as high as 90%. We will compare the performance of our approach with several other mainstream 
approaches for genotype imputation, including statistics methods fastPHASE6 and Beagle7, and the low-rank 
matrix completion based method Mendel-Impute4. SparRec is easy to use for metadata analysis, and it requires 
very simple, easy-to-process input file format and easy-to-interpret output result files. It has better or comparable 
performance compared to current state-of-the-art methods, especially for handling large sample size data with 
very different sets of SNPs and no reference panels.

Methods
The problem of genotype imputation. Current approaches for haplotype inference and missing data 
imputation usually process the genotype data, and each sample is phased and the haplotypes are modeled as 
mosaic of those haplotypes of the reference panel1,3. Our approach could conduct imputation for both haplotype 
and genotype data matrices from different cohorts using different genotyping chips.

Given the matrices of the genotype data with untyped SNPs or the phased haplotype data with missing val-
ues, the imputation problem is to impute the missing data entries of the data matrices. The reader is referred to 
the illustrative formats of the data matrices in Figs 1 and 2 for the diploid genotype data and the corresponding 
phased haplotype data. For the data matrices, each row corresponds to one individual sample and each column 
corresponds to one SNP. In the genotype data matrices, 0, 1, and 2, which correspond to the number of minor 
alleles that an individual carries, are used to represent the possible genotypes such as, BB, Bb, bb, with B and b 
being A, T, C or G. In the haplotype data matrices, 0 and 1 are used to represent the major allele and the minor 
allele.

We present a natural and flexible modelling framework, which utilizes information across multiple reference 
panels and study panels, and which achieves high recovery accuracy even when the data matrices have high per-
centages of missing entries. Our approach combines the multiple chosen reference panels and the different study 
panels together as a large whole data matrix with missing entries (refer to Figs 1 and 2). The idea of our approach 
is based on the following observation: although the large genotype data matrix, which usually has missing entries 
and which may be contaminated by noises and errors from experimental samples and sequencing technologies, 

Figure 1. The genotype data matrix with three reference or study panels with missing data at color-
highlighted untyped SNPs, generated by three different cohorts using different genotyping chips. 
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appear to be very complex, the underlying structure of the data matrix contains essential “sparse” information. By 
“sparse”, we mean the data matrix has the mathematical property of low-rank or low number of co-clusters. We 
test the sparse property using large genotype data matrices and the testing results show the matrices are usually 
low-ranked. In the following we present the technical details of our approach, and test the effects of different 
matrix numerical representations to the ranks of data matrices.

Imputation Based on Low-Rank Matrix Completion. The low-rank matrix completion (LRMC) model 
aims to fill in missing data values of a matrix based on the priori information that the matrix under consideration 
is of low rank. The low-rank matrix completion model can be formulated as the following optimization problem:

. . = ∈ Ωrank X s t X M i jmin ( ), , , ( , ) , (1)X ij ij

where rank(X) denotes the rank of matrix X, and Ω denotes the index set of the known entries of M. That is, we 
are given a set of known entries of M, and we want to fill in the missing entries such that the completed matrix 
is of low rank. In the genotype missing data imputation problem, each row of the matrix M represents a patient 
sample, and each column of the matrix M corresponds to a SNP. That is, Mij represents the j-th allele of the i-th 
patient sample. It is usually believed that patients can be classified into different categories and patients in the 
same category should have similar genetic patterns. Therefore, we believe that the matrix M is low-rank, or at 
least numerically low-rank.

The LRMC model has been widely used in online recommendation, collaborative filtering, computer vision 
and so on. Recently, it has been shown in refs 8–10, that under certain randomness hypothesis, the model (1) is 
equivalent to the following convex optimization problem with high probability:

. . = ∈ Ω
⁎

X s t X M i jmin , , , ( , ) , (2)X ij ij

where ||X||* is called the nuclear norm of matrix X and is defined as the sum of singular values of X. The nuclear 
norm minimization problem (NNM) is numerically easier to solve than the LRMC model because it is a convex 
problem. Many efficient numerical algorithms have been suggested to solve the NNM model, for example11–13, 
to name just a few. In this paper, we use the fixed point continuation method (FPCA) proposed in ref. 11 to solve 
the model (2).

A closely related work to (LRMC) is the Mendel-Impute method introduced in ref. 4. The Mendel-Impute 
method implements Nesterov’s accelerated proximal gradient method (APG) to solve (2), while FPCA proposed 
in ref. 11 can be seen as the ordinary version of proximal gradient method for solving (2). Theoretically, APG is 

faster than FPCA for solving LRMC, because the former attains an  -optimal solution in 
( )O

1  iterations, while 

the latter one attains an  -optimal solution in 
( )O
1  iterations. Mendel-Impute also implements two important 

techniques to further accelerate the speed of APG: the sliding window scheme to better balance the trade-offs 
between accuracy and running time, and the line search technique to find an appropriate step size for the proxi-
mal gradient step. From our experiments, we found that the sliding window scheme is quite helpful for missing 
data imputation. Thus, we incorporated the sliding window scheme to LRMC, denoted as LRMC-s. We observed 
from our numerical tests that the performance of LRMC-s is comparable to Mendel-Impute.

Imputation Based on Matrix Co-clustering Factorization. We now propose a new approach for impu-
tation that is based on matrix co-clustering factorization (MCCF). Ma et al. in ref. 5 developed a co-clustering 
model for two-dimensional and higher-dimensional matrix co-clustering, which is based on a tensor optimization 

Figure 2. The haplotype data matrix with color-highlighted missing data entries. 
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model and an optimization method termed Maximum Block Improvement (MBI)14,15. Inspired by the idea of 
matrix co-clustering for imputation, we develop a basic model as follows.

= − . . = ∈ Ωf A X Y Y A Y XY s t A M i jmin ( , , , ) : , , , ( , ) , (3)A X Y Y F ij ij{ , , , } 1 2 1 2
2

1 2

where ∈ ∈ ∈ ∈ .
× × × ×A R Y R X R Y R, , ,m n m k k k k n

1 2
1 1 2 2

In (3), the Frobenius norm of a matrix X is defined as = ∑ .XX ij ijF
2 2  Our imputation approach, based on the 

matrix co-clustering factorization, aims to complete matrix M by using a low-rank matrix factorization model. In 
our framework, A is the data matrix with missing entries; Y1 and Y2 are the artificial row assignment matrix and 
the artificial column assignment matrix, respectively, and X is the artificial central-point matrix. Note that A is 
also an unknown decision variable in (3), because only a subset of its entires is known. Moreover, note that (3) 
requires the input of k1 and k2, which are closely related to the rank of the matrix to be completed. Therefore, in 
practice, if we have a good estimation to the rank of the matrix, then (3) is a better model to use than (2), because 
it also provides us the clustering information of individual samples and SNPs.

Although the MCCF model is non-convex, it has some natural block-structure that can be utilized to adopt 
an efficient solution method. We propose to solve the model (3) using a block coordinate update (BCU) proce-
dure. There are four block variables in the model (3), namely A, X, Y1 and Y2. The basic idea of BCU is, at each 
iteration, to minimize the function f with respect to one block variable while the other three blocks are fixed at 
the current known values. This idea is effective because we observed that minimizing f for only one block variable 
among A, X, Y1 and Y2 is always relatively easy. A naive implementation of the BCU idea is to minimize f in the 

Figure 3. The flow chart of the imputation algorithm based on the idea of matrix co-clustering 
factorization (MCCF). A is the data matrix with missing entries; Y_1 and Y_2 are the artificial row assignment 
matrix and the artificial column assignment matrix, respectively, and X is the artificial central-point matrix.
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order of A →  Y1 →  X →  Y2, and in each step only one block variable is updated with the other three blocks being 
fixed. The flow chart of this BCU algorithm is shown in Fig. 3. In our MCCF model, the matrix X actually plays 
a more important role than the other three blocks. As a result, it is beneficial if we can update the X block more 
frequently than the other three blocks. Therefore, we implemented the following four different algorithms based 
on the BCU idea.

1. “BCU-1”: BCU with Block Loop in the following order (A −  X) →  (Y1 −  X) →  (Y2 −  X). That is, we take A 
and X together as one (bigger) block. Similarly Y1 and X is one block and Y2 and X is one block. For these 
three blocks, we use BCU to update them one by one. In each block, for example, (A −  X), since we need to 
minimize f with respect to A and X simultaneously, we use the alternating minimization procedure that min-
imizes f with respect to A and X alternatingly, until the function value ceases to change. The other two blocks 
(Y1 −  X) and (Y2 −  X) are dealt with in the same way.

2. “BCU-2”: BCU with the following order of block variables: A →  X →  Y1 →  X →  Y2. That is, we update X twice 
in each sweep of the block variables.

3. “BCU-3”: BCU with the following order of block variables: A →  X →  Y1 →  X →  Y2 →  X. That is, we update X 
three times in each sweep of the block variables. This variant of BCU has been considered by Xu16 for tensor 
decomposition problems.

4. “MBI-BL”: This is a variant of the MBI algorithm proposed by Chen et al.15. MBI-BL applies MBI algorithm 
in ref. 15 to minimize f with four blocks variables: − −X Y X Y X, ( ), ( )1 2  and (A −  X). In each block, for 
example, (A −  X), we use alternating block minimization scheme to minimize f with respect to A and X alter-
natingly, until the function value ceases to change. After having attempted all four block variables, we update 
the block variable with maximum improvement.

All the algorithms are terminated when the objective value in the (k +  1)-th iteration does not decrease signif-
icantly from that in the k-th iteration. We give the detailed description of BCU-1, BCU-2, BCU-3 and MBI-BL as 
Algorithms 1, 2, 3 and 4, respectively (Refer to the steps of each of the four algorithms as follows).

Algorithm 1 (BCU-1)
Given initial iterates X Y Y A, , ,0

1
0

2
0 0 and initial values v0 =  0, v1 =  1:

For k =  0, 1, … , run the following until − <
+

v vk k 1

    1)  (Update A and X). For = … 0, 1,  run the following updates I and II for A and X until the  
objective value does not change much; Xk,0 =  Xk 

    I. ← − . . = ∈ Ω
+ A argmin A Y X Y s t A M i j, , , ( , )k

A
k k k

ij ij
, 1

1
,

2

2

      II. ← −
+ + X argmin A Y XYk

X
k k k, 1 , 1

1 2

2

     2) Set ←
+ +A Ak k1 , 1, ←

+X Xk k,0 , 1

    3)  (Update Y1 and X). For = … 0, 1,  run the following updates I and II for Y1 and X until the objec-
tive value does not change much:

    I. ← −
+ + Y argmin A Y X Yk

Y
k k k

1
, 1 1

1
,

2

2

1

      II. ← −
+ + + X argmin A Y XYk

X
k k k, 1 1

1
, 1

2

2

    4) Set ←
+ +Y Yk k

1
1

1
, 1 , ←

+X Xk k,0 , 1

    5)  (Update Y2 and X). For = … 0, 1,  run the following updates I and II for Y2 and X until the objec-
tive value does not change much:

    I. ← || − ||+ + + Y argmin A Y X Yk
Y

k k k
2

, 1 1
1

1 ,
2

2

2

      II. ← −
+ + + + X argmin A Y XYk

X
k k k, 1 1

1
1

2
, 1 2

    6) Set ← ←+ + + + Y Y X X,k k k k
2

1
2

, 1 1 , 1

    7) Compute =
+

+ + + +v f A X Y Y( , , , )k
k k k k

1
1 1

1
1

2
1

Algorithm 2 (BCU-2)

Given initial iterates X Y Y A, , ,0
1
0

2
0 0 and initial values v0 =  0, v1 =  1:

For k =  0, 1, … , run the following until − <
+

v vk k 1

   1) Update A: ← − . . = ∈ Ω
+A argmin A Y X Y s t A M i j, , , ( , )k

A
k k k

ij ij
1

1 2

2

   2) Update X: ← −
+X argmin A Y XYk

X
k k k,1 1

1 2

2

   3) Update Y1: ← −
+ +Y argmin A Y X Yk

Y
k k k

1
1 1

1
,1

2

2

1

   4) Update X: ← −
+ + +X argmin A Y XYk

X
k k k1 1

1
1

2

2

   5) Update Y2: ← −
+ + + +Y argmin A Y X Yk

Y
k k k

2
1 1

1
1 1

2

2

2

   6) Compute =
+

+ + + +v f A X Y Y( , , , )k
k k k k

1
1 1

1
1

2
1
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Algorithm 3 (BCU-3)

Given initial iterates X Y Y A, , ,0
1
0

2
0 0 and initial values v0 =  0, v1 =  1:

For k =  0, 1, … , run the following until − <
+

v vk k 1 
   1) Update A: ← − . . = ∈ Ω

+A argmin A Y X Y s t A M i j, , , ( , )k
A

k k k
ij ij

1
1 2

2

   2) Update X: ← −
+X argmin A Y XYk

X
k k k,1 1

1 2

2

   3) Update Y1: ← −
+ +Y argmin A Y X Yk

Y
k k k

1
1 1

1
,1

2

2

1

   4) Update X: ← −
+ +X argmin A Y XYk

X
k k k,2 1

1
1

2

2

   5) Update Y2: ← || − ||+ + +Y argmin A Y X Yk
Y

k k k
2

1 1
1

1 ,2
2

2

2

   6) Update X: ← −
+ + + +X argmin A Y XYk

X
k k k1 1

1
1

2
1 2

   7) Compute =
+

+ + + +v f A X Y Y( , , , )k
k k k k

1
1 1

1
1

2
1

Algorithm 4 (MBI-BL)

Given initial iterates X Y Y A, , ,0
1
0

2
0 0, and initial values v0 =  0, v1 =  1.

For k =  0, 1,… , run the following until − <
+

v vk k 1
    1) Block Improvement:

← −

← −

← −

← − . . = ∈ Ω

X argmin A Y XY

Y X argmin A Y XY

Y X argmin A Y XY

A X argmin A Y XY s t A M i j

( , )

( , )

( , ) , , , ( , )

k
X

k k k

k k
Y X

k k

k k
Y X

k k

k k
A X

k k
ij ij

,1
1 2

2

1
,2

( , ) 1 2

2

2
,3

( , ) 1 2

2

,4
( , ) 1 2

2

1

2

    2) Compute the corresponding objective values:

=

=

=

=

w f A X Y Y

w f A X Y Y

w f A X Y Y

w f A X Y Y

( , , , )

( , , , )

( , , , )

( , , , )

k k k k

k k k k

k k k k

k k k k

1
,1

1 2

2
,2

1 2

3
,3

1 2

4
,4

1 2

    3)  Maximum Improvement: Compare w1, w2, w3, w4, pick up the smallest value to update the cor-
responding block variables:

   I.   If w1 is the smallest, then  

←+X Xk k1 ,1
, vk+1 ←  w1

      II.   If w2 is the smallest, then  

← ←+ +Y Y X X,k k k k
1

1
1

1 ,2
, vk+1 ←  w2

       III.  If w3 is the smallest, then  

← ← ←+ +

+
Y Y X X v w, ,k k k k

k2
1

2
1 ,3

1 3

   IV.  If w4 is the smallest, then  

← ← ←+ +

+
A A X X v w, ,k k k k

k
1 1 ,4

1 4

The effects of different matrix numerical representations to the matrix ranks. Here we show that 
the way we represented the entries of the matrix with different numbers seems to generate approximate low-rank 
matrices in practice. These observations justified that our (LRMC-s) and (MCCF) models indeed capture the 
underlying structures of the data. We used two data sets referred to as “data-00-ATCG” and “data-15-ATCG” in 
our experiment: Both data sets are of size (10,000 ×  3,000), with each data set including 10,000 alleles and 1,500 
sample diplotypes from the British Birth Cohort. We computed the singular values of the data matrix obtained by 
assigning A =  0, T =  1, C =  0, G =  1 in data-00-ATCG, and the top ten leading singular values are 1e +  3*[3.3236, 
0.6248, 0.0687, 0.0660, 0.0635, 0.0599, 0.0592, 0.0582, 0.0578, 0.0574]. We can see that the largest singular value 
is about 48 times bigger than the third largest singular value, the second largest singular value is about 9 times 
bigger than the third largest singular value. However, starting from the third singular value, there is not much dif-
ference among the rest singular values. As a result, we can conclude that this data matrix is approximately a rank-2 
matrix. To help the readers better visualize this observation, we plot the 100 leading singular values of this data 
matrix in Fig. 4a, from which we can clearly see that the first two singular values are significantly larger than other 
singular values and the matrix can be viewed as an approximately rank-2 matrix. Similarly, Fig. 4b shows the 100 
leading singular values of the data matrix obtained by assigning A =  1, T =  2, C =  3, G =  4 in data-00-ATCG, 
whose 10 leading singular values are 1e +  4*[1.5100, 0.1621, 0.0159, 0.0143, 0.0142, 0.0139, 0.0136, 0.0135, 
0.0135, 0.0133], which again indicates that the resulting matrix can be regarded as an approximate rank-2 matrix. 
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Figure 4c shows the 100 leading singular values of the matrix obtained by assigning A =  − 2, T =  − 1, C =  1, G =  2 
in data-15-ATCG, whose 10 leading singular values are 1e +  3*[6.7762, 2.3994, 0.2154, 0.1906, 0.1879, 0.1866, 
0.1855, 0.1842, 0.1830, 0.1819], which again indicates that the resulting matrix is approximately rank-2. Figure 4d 
shows the 100 leading singular values of the matrix obtained by assigning A =  1, T =  0, C =  1, G =  0 in data-
15-ATCG, whose leading 10 singular values are 1e +  3*[3.5305, 0.6383, 0.0746, 0.0630, 0.0601, 0.0596, 0.0585, 
0.0580, 0.0578, 0.0575], which again indicates that the resulting matrix is approximately rank-2. Moreover, we 
also computed the leading singular values of datasets Chr22, Chr22_3841, HapMap3 and 1KG_chr22 are the 
results are shown in Fig. 5. From Fig. 5 we can see that these datasets are approximately low-rank as well. All these 
observations suggest that the resulting matrices are usually low-rank, and thus can be completed by solving our 
models (LRMC-s) and (MCCF) using the proposed methods.

For LRMC-s and MCCF, they are two different models for the same target: matrix completion. Usually if we 
have a good estimation of the rank of the matrix, then we can decide the size of matrices Y1, X, Y2, and thus MCCF 
is preferred because it also provides the clustering information of individual samples and SNPs. Otherwise, we 
should use LRMC-s, which does not need the rank information.

Data availability. The framework of SparRec (Sparse Recovery) is implemented in MATLAB and the source 
code is available from: https://sourceforge.net/projects/sparrec/files/?source=navbar Or, http://bioinformatics. 
astate.edu/code2/ and also available on GitHub at: https://github.com/astate-bioinformatics/SparRec.

Testing Results
In this section, we shall test the recovering capabilities of all of our proposed methods and the three currently 
mainstream imputation methods (Beagle, fastPHASE and Mendel-Impute) for several real datasets with or 
without reference information. In Tables 1–6, we report the error rates of fastPHASE, Beagle, Mendel-Impute, 
LRMC-s, and four MCCF algorithms: BCU-1, BCU-2, BCU-3 and MBI-BL, where we chose k1 =  100 and k2 is the 
one that gives the best error rate from the list {2, 3, 5, 10, 20}, and in most cases k2 =  20. Moreover, in Tables 7 and 
8, we report the comparison of these algorithms for various datasets with 1% masked genotypes, which are com-
monly encountered in GWAS study. Overall, we shall see that Mendel-Impute and LRMC-s are quite comparable, 

Figure 4. The effects of different numerical representations to the matrix ranks, with the matrix of size 
(10,000 × 3,000). Part a (top left): the distribution of the 100 leading singular values of the data matrix 
obtained by assigning A =  0, T =  1, C =  0, G =  1 in data-00-ATCG. Part b (top right): the distribution of the 100 
leading singular values of the data matrix obtained by assigning A =  1, T =  2, C =  3, G =  4 in data-00-ATCG. 
Part c (bottom left): the distribution of the 100 leading singular values of the data matrix obtained by assigning 
A =  − 2, T =  − 1, C =  1, G =  2 in data-15-ATCG. Part d (bottom right): the distribution of the 100 leading 
singular values of the data matrix obtained by assigning A =  1, T =  0, C =  1, G =  0 in data-15-ATCG.
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Figure 5. The leading singular values of four datasets. Part a: Chr22, Part b: Chr22_3841, Part c: HapMap3, 
and Part d: 1KG_Chr22. From these figures we can see that these datasets are approximately of low rank.

Method

Error Rate

5% 
Masked

10% 
Masked

25% 
Masked

50% 
Masked

60% 
Masked

70% 
Masked

80% 
Masked

90% 
Masked

fastPHASE 0.1152 0.1202 0.1216 0.1590 0.1665 0.1810 0.1766 0.1900

Beagle 0.1071 0.1464 0.1285 0.1797 0.1996 0.2016 0.2032 0.2066

Mendel 0.0106 0.0104 0.0146 0.0202 0.0263 0.0358 0.0507 0.1160

LRMC-s 0.0090 0.0110 0.0129 0.0200 0.0248 0.0329 0.0464 0.1350

BCU-1 0.0174 0.0170 0.0215 0.0308 0.0374 0.0510 0.0670 0.1315

BCU-2 0.0176 0.0166 0.0207 0.0309 0.0370 0.0522 0.0661 0.1274

BCU-3 0.0176 0.0166 0.0207 0.0309 0.0370 0.0522 0.0661 0.1274

MBI-BL 0.0174 0.0159 0.0191 0.0299 0.0349 0.0477 0.0701 0.1531

Table 1.  Error rate for estimation of missing genotypes for Chr22.

Method

Error Rate

5% 
Masked

10% 
Masked

25% 
Masked

50% 
Masked

60% 
Masked

70% 
Masked

80% 
Masked

90% 
Masked

fastPHASE 0.1189 0.1125 0.1739 0.1791 0.1821 0.1840 0.1793 0.1834

Beagle 0.0766 0.0735 0.0752 0.0819 0.0917 0.0950 0.0970 0.0951

Mendel 0.0148 0.0150 0.0163 0.0197 0.0218 0.0256 0.0330 0.0554

LRMC-s 0.0146 0.0148 0.0161 0.0194 0.0214 0.0251 0.0328 0.0578

BCU-1 0.0445 0.0446 0.0446 0.0451 0.0454 0.0462 0.0478 0.0569

BCU-2 0.0445 0.0446 0.0446 0.0451 0.0454 0.0462 0.0479 0.0567

BCU-3 0.0445 0.0446 0.0446 0.0451 0.0454 0.0462 0.0479 0.0567

MBI-BL 0.0444 0.0446 0.0447 0.0453 0.0457 0.0466 0.0488 0.0688

Table 2.  Error rate for estimation of missing genotypes for Chr22_3841.
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Method

Error Rate

5% 
Masked

10% 
Masked

25% 
Masked

50% 
Masked

60% 
Masked

70% 
Masked

80% 
Masked

90% 
Masked

fastPHASE 0.2658 0.2865 0.3115 0.3130 0.3135 0.3154 0.3165 0.3157

Beagle 0.2383 0.2366 0.2312 0.2228 0.2193 0.2159 0.2126 0.2095

Mendel 0.1666 0.1665 0.1667 0.1676 0.1688 0.1715 0.1760 0.1888

LRMC-s 0.1667 0.1668 0.1681 0.1714 0.1736 0.1772 0.1825 0.1927

BCU-1 0.1648 0.1643 0.1645 0.1649 0.1648 0.1668 0.1651 0.1656

BCU-2 0.1648 0.1643 0.1645 0.1648 0.1648 0.1668 0.1651 0.1656

BCU-3 0.1648 0.1643 0.1645 0.1648 0.1648 0.1668 0.1651 0.1656

MBI-BL 0.1649 0.1644 0.1646 0.1649 0.1648 0.1685 0.1652 0.1659

Table 3.  Error rate for estimation of missing genotypes for WTCCC data.

Method

Error Rate

5% 
Masked

10% 
Masked

25% 
Masked

50% 
Masked

60% 
Masked

70% 
Masked

80% 
Masked

90% 
Masked

fastPHASE 0.2090 0.1860 0.1730 0.3140 0.3120 0.3130 0.3140 0.3160

Beagle 0.1335 0.1369 0.1351 0.1469 0.1560 0.1649 0.1762 0.2000

Mendel 0.0251 0.0282 0.0349 0.0530 0.0638 0.0790 0.1022 0.1525

LRMC-s 0.0247 0.0277 0.0340 0.0518 0.0628 0.0780 0.1007 0.1481

BCU-1 0.1663 0.1682 0.1705 0.1729 0.1760 0.1805 0.1835 0.1850

BCU-2 0.1664 0.1681 0.1706 0.1729 0.1760 0.1806 0.1833 0.1850

BCU-3 0.1664 0.1681 0.1706 0.1729 0.1760 0.1806 0.1833 0.1850

MBI-BL 0.1663 0.1683 0.1710 0.1735 0.1769 0.1812 0.1835 0.1850

Table 4.  Error rate for estimation of missing genotypes for HapMap3 data with 19711 markers.

Method

Error Rate

5% 
Masked

10% 
Masked

25% 
Masked

50% 
Masked

60% 
Masked

70% 
Masked

80% 
Masked

90% 
Masked

fastPHASE 0.2329 0.1978 0.3174 0.3085 0.3047 0.3070 0.3066 0.3055

Beagle 0.1323 0.1335 0.1353 0.1496 0.1596 0.1696 0.1761 0.1933

Mendel 0.0300 0.0330 0.0394 0.0572 0.0677 0.0820 0.1034 0.1510

LRMC-s 0.0296 0.0320 0.0384 0.0562 0.0670 0.0809 0.1018 0.1469

BCU-1 0.1377 0.1398 0.1428 0.1459 0.1504 0.1574 0.1684 0.1816

BCU-2 0.1377 0.1392 0.1429 0.1459 0.1502 0.1570 0.1690 0.1816

BCU-3 0.1377 0.1392 0.1429 0.1459 0.1502 0.1570 0.1690 0.1816

MBI-BL 0.1388 0.1400 0.1425 0.1463 0.1508 0.1572 0.1679 0.1815

Table 5.  Error rate for estimation of missing genotypes for HapMap3 data with 3000 markers.

Method

Error Rate

5% 
Masked

10% 
Masked

25% 
Masked

50% 
Masked

60% 
Masked

70% 
Masked

80% 
Masked

90% 
Masked

fastPHASE 0.2864 0.2241 0.2591 0.3206 0.3264 0.3225 0.3331 0.3565

Beagle 0.1454 0.1357 0.1488 0.1533 0.1666 0.1747 0.2027 0.2272

Mendel 0.0292 0.0372 0.0445 0.0683 0.0819 0.1016 0.1274 0.1803

LRMC-s 0.0280 0.0366 0.0441 0.0685 0.0826 0.1018 0.1275 0.1765

BCU-1 0.0847 0.0975 0.1014 0.1048 0.1163 0.1319 0.1481 0.1940

BCU-2 0.0847 0.0980 0.1008 0.1043 0.1150 0.1310 0.1484 0.1953

BCU-3 0.0847 0.0980 0.1008 0.1043 0.1150 0.1310 0.1484 0.1953

MBI-BL 0.0844 0.0963 0.0991 0.1041 0.1135 0.1268 0.1469 0.1928

Table 6.  Error rate for estimation of missing genotypes for HapMap3 data with 300 markers.
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and outperform other methods. In Tables 9–13, we test the robustness of our four MCCF algorithms with differ-
ent combinations of k1 and k2, and our results show that the MCCF algorithms are not sensitive to k1, and larger 
k2 usually gives better error rates.

1% Masked 1% Masked HapMap3 With Ref. 1KG_chr22

chr22 chr22_3841 WTCCC 19711 M. 3000 M. 300 M. With Ref. No Ref.

fastPHASE 0.1288 0.0759 0.2507 0.2185 0.1465 0.1662 0.0668 ———

Beagle 0.1266 0.0757 0.2386 0.1279 0.1229 0.1447 0.0359 ———

Mendel 0.0090 0.0146 0.1665 0.0237 0.0278 0.0267 0.0252 0.0710

LRMC-s 0.0090 0.0145 0.1665 0.0223 0.0267 0.0279 0.0227 0.0710

BCU-1 0.0147 0.0455 0.1641 0.1639 0.1354 0.0812 0.0391 0.0710

BCU-2 0.0147 0.0456 0.1641 0.1639 0.1354 0.0812 0.0436 0.0710

BCU-3 0.0147 0.0456 0.1641 0.1639 0.1354 0.0812 0.0428 0.0710

MBI-BL 0.0147 0.0455 0.1641 0.1637 0.1377 0.0749 0.0680 0.0710

Table 7.  Error rates of our algorithms, Mendel-Impute, fastPhase and Beagle on various data sets.

1% Masked 1% Masked HapMap3 With Ref. 1KG_chr22

chr22 chr22_3841 WTCCC 19711 M. 3000 M. 300 M. With Ref. No Ref.

Mendel 2.87 303.76 1198.24 170.85 39.23 4.70 9134.84 1419.79

LRMC-s 1.67 378.63 1333.61 299.69 51.83 2.67 15183.58 1143.91

BCU-1 1.66 116.59 506.59 126.31 30.10 2.89 4996.243 253.57

BCU-2 0.39 21.55 94.28 25.46 5.98 0.61 2381.207 139.84

BCU-3 0.41 23.30 101.70 27.51 6.48 0.70 2639.499 159.55

MBI-BL 2.84 286.24 1070.24 295.66 46.78 3.71 8259.953 395.87

Table 8.  CPU times (in seconds) of our algorithms and Mendel-Impute on various data sets.

k2

k1 = 50 k1 = 100 k1 = 200

2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

BCU-1 0.11 0.08 0.05 0.02 0.01 0.11 0.08 0.05 0.02 0.01 0.11 0.08 0.05 0.02 0.01

BCU-2 0.11 0.08 0.05 0.03 0.01 0.11 0.08 0.05 0.03 0.01 0.11 0.08 0.05 0.03 0.01

BCU-3 0.11 0.08 0.05 0.03 0.01 0.11 0.08 0.05 0.03 0.01 0.11 0.08 0.05 0.03 0.01

MBI-BL 0.11 0.08 0.05 0.03 0.01 0.11 0.08 0.05 0.03 0.01 0.11 0.08 0.05 0.03 0.01

Table 9.  Error rate of MCCF with different k1 and k2 (dataset: Chr22, 1% masked).

k2

k1 = 50 k1 = 100 k1 = 200

2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

BCU-1 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05

BCU-2 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05

BCU-3 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05

MBI-BL 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05 0.08 0.08 0.07 0.06 0.05

Table 10.  Error rate of MCCF with different k1 and k2 (dataset: Chr22_3841, 1% masked).

k2

k1 = 50 k1 = 100 k1 = 200

2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

BCU-1 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

BCU-2 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

BCU-3 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

MBI-BL 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Table 11.  Error rate of MCCF with different k1 and k2 (dataset: WTCCC, 1% masked).
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Comparison of our LRMC-s and MCCF algorithms with Mendel-Impute, Beagle and fastPHASE.  
To justify the performance of our proposed methods, we compare the recovery accuracy of our algorithms 
with that of some popular statistics imputation method such as Beagle7 (version 3.3.2), fastPHASE6 (version 
1.4.0). Both of those methods belong to haplotype-inference methods. In particular, fastPHASE is based on a 
haplotype-clustering model with a fixed number of clusters, while Beagle describes the correlation between mark-
ers as a localized haplotype-cluster model, which can in turn be viewed as a hidden Markov model (HMM). The 
merit of HMM is that it can be used to sample or find the most likely haplotype pair for each individual. Different 
from other approaches (such as IMPUTE v22), Beagle and fastPHASE still work even in the absence of reference 
panels, making them an ideal candidate for comparison. We also compare our approaches with another low-rank 
matrix completion based method Mendel-Impute4 in the experiment.

Criteria for Evaluation. For each data set, we first masked 5%, 10%, 25%, 50%, 60%, 70%, 80% and 90% of the 
genotypes respectively. Then we run fastPHASE, Beagle (default setting with R =  4) and our methods proposed 
above together with some rounding procedure if necessary to recover the missing data. The raw output of our 
methods consists of numbers in the range 0–2. These are converted into genotypes by rounding and an estimate 
of uncertainty could be obtained by means of a similar post-processing step to that used in ref. 4.

The so-called allelic-imputation error rate is referred to as the proportion of missing alleles that are incorrectly 
imputed. It has been widely adopted in the literature to measure the capability of various imputation approaches. 
In this paper, we calculated this error rate of the tested methods and summarize the results in the following tables.

In Tables 1–6, we reported the comparison results of Mendel-Impute, LRMC-s and MCCF on various datasets. 
We shall see that the performance of Mendel-Impute and LRMC-s is quite comparable.

Comparison without Reference Information. The first three datasets used for comparison are tested without 
using a reference panel, and are provided by the Wellcome Trust Case Control Consortium (WTCCC). Two of 
these data sets contain genetic information from chromosome 22. Of these, the smaller dataset referred to as 
“Chr22” contains 500 markers, while the larger referred to as “Chr22_3841” contains 3841 markers. Both studies 
include the genetic information of 1093 sample genotypes. The latter set is the same set that is used in ref. 6 for 
the study of ImputeV2.

Tables  1 and 2 give allelic-imputation error rate of Chr22 and Chr22_3841 respectively for each 
haplotype-inference method. Those results suggest that both LRMC-s and MCCF algorithms consistently outper-
form Beagle for both data sets regardless whether or not the missing proportion is low or high. For the approaches 
based on the matrix co-clustering factorization, BCU-2 and BCU-3 usually achieve the least error rate.

The third set, which is referred to as “WTCCC” in the study, includes one thousand and five hundred samples 
from the British Birth Cohort with 10,000 alleles for each. These 10,000 markers were taken from the middle of 
the entire genome-wide association study.

The error rates of various imputation approaches are summarized in Table 3. Similar to the results of previous 
tests, the best-performing approaches are BCU-2 and BCU-3. The low-rank matrix completion method performs 
better than Beagle but slightly worse than the best two co-clustering factorization algorithms.

Comparison in the Presence of Reference Panel. In the previous tests, we did not provide any reference informa-
tion when performing imputation, which however is not the case in many imputation studies. To further justify 
the capability of our approaches, we run our test on a dataset that includes reference information. This dataset is 
from the HapMap3, and itself consists of 165 sampled individuals with 19711 alleles per sample. For the purpose 
of imputation, 41 of the samples were separated to form a reference panel, and we had the remaining 124 samples 
gradually masked (from 5% to 90%) as the testing data.

k2

k1 = 50 k1 = 100 k1 = 200

2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

BCU-1 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16

BCU-2 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16

BCU-3 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16

MBI-BL 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16

Table 12.  Error rate of MCCF with different k1 and k2 (dataset: HapMap3, 1% masked).

k2

k1 = 50 k1 = 100 k1 = 200

2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

BCU-1 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04

BCU-2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.05

BCU-3 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.05

MBI-BL 0.05 0.05 0.07 0.07 0.07 0.05 0.07 0.07 0.07 0.07 0.05 0.07 0.07 0.07 0.07

Table 13.  Error rate of MCCF with different k1 and k2 (dataset: 1KG_Chr22).
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The error rates of the imputation methods discussed in this paper are presented in Table 4.
It appears in this case that both LRMC-s and MCCF algorithms significantly outperforms other methods. 

In the presence of reference panels, Beagle is superior to all of our matrix co-clustering factorization based 
approaches. However, we notice that the dataset under test is not balanced in its two dimensions. In other words, 
we are dealing with a very unbalanced matrix with almost 20000 markers and only hundreds of samples.

Therefore, to further investigate the impact of reference information on our approaches, we keep the number 
of samples unchanged while selecting only the first 3000 markers, even further only the first 300 markers, and 
run similar tests under new settings respectively. The error rates of each imputation algorithm are reported in 
Tables 5 and 6. From those tables, we can see that the performances of our matrix co-clustering factorization 
based algorithms steadily improve as the number of markers decreases. When considering only 300 markers, all 
of our proposed algorithms enjoy a lower error rate than that of Beagle.

Comparison under some more practical scenarios. In this section, we generated a few new data sets to further 
compare the error rates given by Mendel-Impute, LRMC-s and MCCF, and these results are reported in Table 7; 
and the CPU time consumed is given in Table 8. Specifically, we generated 1% missing rate data for chr22, 
chr22_3841, WTCCC and HapMap3 respectively. In addition, we generated 1KG_chr22, which consists 60000 
SNPs and 1092 individuals. We took the first half of individuals as reference panel and masked about 85% the sec-
ond half individuals as study panel. Then we tested this data set either with reference or without reference panel. 
It is worth mentioning that the resulting matrices by masking components through these two ways are more likely 
to be encountered in practice.

The dataset of 1KG_chr22 setup information is detailed as follows. The dataset 1KG_chr22 was prepared to 
represent imputing SNPs from a reference panel typed on a different chip from the study sample, as described 
in ref. 4. We assumed that the data were generated by the Illumina “Infinium Omni2.5-8 BeadChip”. We created 
a study and reference panel derived from the 1000 Genomes Project haplotypes from the March 2012 release of 
Phase 1, obtained from the IMPUTE2 website2. This dataset consists of haplotypes for 1092 individuals, which 
we split into a study and reference panel by assigning half of the individuals to each such that the distribution of 
ethnicities was preserved across both groups. For our study panel we chose 60,000 SNPs from a randomly selected 
region on chromosome 22 and masked genotypes of all SNPs that were not present in Illumina’s manifest file for 
the Omni2.5-8 Beadchip. The resulting study panel included 8,808 SNPs for which genotypes were present, and 
51,192 SNPs with masked genotypes. Thus, the study panel consists of 85.3% systematically missing data for 546 
individuals.

For MCCF algorithms, we used k1 =  100 and k2 =  20. The error rates of different algorithms are summarized in 
Table 7. All the experiments in this subsection were done on a multicore computer with eight 2.8 GHz Intel Core 
E3 processors and 16 GB of RAM.

From Table 7 we see that LRMC-s and Mendel achieve comparable error rates, both outperforming Beagle 
and fastPHASE in all scenarios. Moreover, for the biggest data set 1KG_chr22 with reference panel (a matrix of 
size 60000 ×  2184), the error rate of LRMC-s is slightly lower than that of Mendel. Since there are markers with all 
samples missing in the study panel of 1KG_chr22, both fastPHASE and Beagle failed to return a valid phased file 
when they are not provided with reference panel.

Since it is reported in ref. 4 that Mendel is very efficient in terms of running time (much faster than Beagle, 
especially when the data set is large), we also compared the CPU times of Mendel-Impute and our algorithms. The 
running times are recorded in seconds using the tic/toc functions of MATLAB.

Table 8 suggests that BCU-2 and BCU-3 are the fastest algorithms. Combining with Table 7, we note that 
their yielded error rates are not as good as that of Mendel-Impute and LRMC-s but the differences are relatively 
small. Moreover, their error rates are better than Beagle’s in most cases. In addition, Mendel is usually faster than 
LRMC-s. However, for the 1KG_chr22 data set without reference, LRMC-s is faster than Mendel.

For general memory usage, we tested our algorithms with the dataset 1KG_chr22 with reference panel (which 
is a matrix of 60000*2100 entries). It shows that the peak memory usage of our algorithms is about 1 GB, which 
matches the size of the input matrix representation with MATLAB.

Robustness of our MCCF algorithms with different values of k1 and k2. Tables 9–13 show the error 
rates of the four MCCF algorithms with different combinations of k1 and k2 for datasets Chr22, Chr22_3841, 
WTCCC and HapMap3 with 1% missing entries, and 1KG_chr22.

From Tables 9–13 we can observe that in terms of error rate, MCCF is not sensitive to k1, while larger k2 usually 
produces smaller error rate (the only exception is MBI_BL for 1KG_chr22 where k2 =  2 gives better error rate 
than larger ones, but the difference is not very significant). Moreover, it is intuitive that larger k2 usually results 
in longer CPU time, because larger linear systems are needed to be solved in the MCCF algorithms. Therefore, to 
balance the tradeoff of error rate and running time, in practice we may choose BCU-2 and BCU-3 with k1 =  50 
or 100, and k2 =  5.

Summary and Discussion
In this study, we present an observation regarding the underlying structural property of the large, noisy GWAS 
genetic data matrices with missing data: these data matrices may contain the sparse information of low-rank and 
low number of co-clusters. Chi et al.4 have developed Mendel-Impute as a low-rank matrix completion model for 
GWAS imputation. For the next-generation genotype imputation, we believe that further mathematical or statis-
tics model design and new method development should make use of this sparsity structure.

With this paper, we present SparRec: a new framework for genotype imputation based on our study of the 
sparse properties of genetic data matrices. The computational models of SparRec are based on low-rank and 
low number of co-clusters of GWAS data matrices, and the performance is better than or comparable to the 
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current state-of-the-art methods for GWAS imputation. As with other matrix completion based methods, such as 
Mendel-Impute, SparRec does not require the information of reference panels, and it can naturally handle large 
and complex missing data imputation tasks, which may contain multiple reference panels and diverse study pan-
els from different platforms with different sets of SNPs. While IMPUTEv2 tried to handle datasets with unphased 
and incomplete genotypes from different platforms (refer to scenario 1 and scenario 2 of IMPUTEv22), its model 
may not be able to accommodate scenarios other than the two scenarios considered in ref. 2, and it is not con-
venient to prepare for the required input file formats for IMPUTEv2. Also note that current imputation meth-
ods, such as Beagle, can work without a reference panel; however it does not work with two or more haplotype 
or genotype reference panels used in the same run. Compared with the state-of-the-art approaches, SparRec 
is user-friendly and there is no limit on the number of references or study panels for the metadata analysis. To 
further enhance GWAS capabilities and facilitate downstream analysis, SparRec offers a viable alternative for 
biomedical researchers to perform various imputation tasks.

From a methodological point of view, current popular statistics imputation methods, such as IMPUTE v117, 
IMPUTE v2.22, MACH18, fastPHASE6 and Beagle7, are based on using “local” structure information of the ref-
erence panels, and the genotype imputation is modeled as a “mosaic” of patterns in relation to the haplotype 
reference panels. For this reason, current statistics methods usually handle only one study dataset at a time with 
only one or two reference panels1,3. In contrast, Mendel-Impute4 and our newly proposed LRMC-s method use 
information based on low-rank structure of the data. From that point of view, Mendel-Impute and our method 
could naturally utilize all available information of the reference panels and the study panels to impute the missing 
data entries. Moreover, our MCCF method takes advantage of the low co-cluster number property, which is also 
the structural information of the dataset. Interestingly, even with missing data rates as high as 90%, our methods 
could still reliably achieve high level of imputation accuracy because the data matrix does possess a clear sparse/
low-rank structure.
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